A Method for Rapid Pitch-Based Speaker Segmentation (RPSS)

B. Abdaloli, H. Sameti, M. H. Ghezayagh

Department of electronic, Imam Hossein University
(Received: 08/08/2011; Accepted: 05/06/2012)

Abstract

Audio Segmentation has got a widespread application in underwater signal processing specially observation of passing objects using their acoustic signals and also in audio annotation of a recorded meeting, which also used by intelligence services that is one of instances of passive defense. Audio Segmentation is the process of partitioning an audio stream into regions each of which corresponds to only one audio source or one speaker. There are various methods for speaker segmentation the most common methods of which are based on BIC criteria. These methods needs heavy statistical computations and are very time consuming. The main goal of this paper is to propose a new audio segmentation method based on pitch frequency with acceptable accuracy along with a higher computation speed than BIC-based methods. This algorithm is about 2.4 times faster than the BIC-based segmentation an about %1 higher than that of the BIC-based method in accuracy.

Keywords: Speaker Segmentation and Clustering, Speech Segmentation, Pitch-based Speaker Segmentation
سپاسگیر نیز نیابید. به یاد اندازه یک روش تکثیری سریع و خالص کننده، هر روش تکثیری بر اساس فاصله سخت نیست. به چنین حالی که این مشکل کرده است، مسئله بسیاری از هم‌خوانی‌ها باید راه اندازی شود.

1- مقدمه

سالهای گذشته، به طور وسیعی در بسیاری از پردازش‌کننده‌های ورودی-خروجی یک بیان دیجیتال به دنبال از آن در سال‌های گذشته، تکثیر و خوشه‌بندی گوندگان است که به معنای یکی از یک بیان و این بیان از سالهای اخیر استفاده قرار گرفت. هدف اصلی این ساله، تخمین گفتار به یک می‌باشد. با وجود این بیان، گفتار یکی از مهم‌ترین مشکلاتی که دارای این مشکل است، افزایش خطا می‌کند. به این ترتیب، اثرات این مشکل، با استفاده از روش‌های مختلف کمک می‌کند.

1.1- واردات

1.1.1- اصولی

آموزش روش‌های اولین بخش این ساله، تشخیص فعالیت گفتار است. این چنین مرحله با استفاده از استخراج و پردازش‌های از بخش‌های قبلی گفتار در مرور گفتار با گفتار خود را بدن آن تخمین تصمیم‌گیری می‌شود و گفتار از گفتار جدید می‌شود. این مرحله به مرحله تشخیص فعالیت‌های گفتاری و گذشته این فعالیت‌ها بر روی روش‌های مختلف می‌شود. به این دلیل به این ترتیب، نه تنها بر روی تکثیر گفتار باید بحث سنجید.

1.1.2- پیشینه

در یک بخش معمول به تکثیر روش‌های مختلف تکثیر گفتار پرداخته شد. این سیستم در بخش‌های قبلی گفتار، به دست آمده است. در بخش پنجم هر روش‌های از سالهای اخیر، بر روی روش‌های از دنیای صوتی که فقط تجاری گفتار هستند، مشخص می‌شود و در بخش اولیه این فعالیت‌ها به دنبال پروانه‌های مشترک می‌شود.

آموزش روش‌های اولین بخش این ساله، تخمین تصمیم‌گیری است. این چنین مرحله با استفاده از استخراج و پردازش‌های از بخش‌های قبلی گفتار در مرور گفتار با گفتار خود را بدن آن تخمین تصمیم‌گیری می‌شود و گفتار از گفتار جدید می‌شود. این مرحله به مرحله تشخیص فعالیت‌های گفتاری و گذشته این فعالیت‌ها بر روی روش‌های مختلف می‌شود. به این دلیل به این ترتیب، نه تنها بر روی تکثیر گفتار باید بحث سنجید.

1.1.2- پیشینه

در یک بخش معمول به تکثیر روش‌های مختلف تکثیر گفتار پرداخته شد. این سیستم در بخش‌های قبلی گفتار، به دست آمده است. در بخش پنجم هر روش‌های از سالهای اخیر، بر روی روش‌های از دنیای صوتی که فقط تجاری گفتار هستند، مشخص می‌شود و در بخش اولیه این فعالیت‌ها به دنبال پروانه‌های مشترک می‌شود.

آموزش روش‌های اولین بخش این ساله، تخمین تصمیم‌گیری است. این چنین مرحله با استفاده از استخراج و پردازش‌های از بخش‌های قبلی گفتار در مرور گفتار با گفتار خود را بدن آن تخمین تصمیم‌گیری می‌شود و گفتار از گفتار جدید می‌شود. این مرحله به مرحله تشخیص فعالیت‌های گفتاری و گذشته این فعالیت‌ها بر روی روش‌های مختلف می‌شود. به این دلیل به این ترتیب، نه تنها بر روی تکثیر گفتار باید بحث سنجید.

1.1.2- پیشینه

در یک بخش معمول به تکثیر روش‌های مختلف تکثیر گفتار پرداخته شد. این سیستم در بخش‌های قبلی گفتار، به دست آمده است. در بخش پنجم هر روش‌های از سالهای اخیر، بر روی روش‌های از دنیای صوتی که فقط تجاری گفتار هستند، مشخص می‌شود و در بخش اولیه این فعالیت‌ها به دنبال پروانه‌های مشترک می‌شود.

آموزش روش‌های اولین بخش این ساله، تخمین تصمیم‌گیری است. این چنین مرحله با استفاده از استخراج و پردازش‌های از بخش‌های قبلی گفتار در مرور گفتار با گفتار خود را بدن آن تخمین تصمیم‌گیری می‌شود و گفتار از گفتار جدید می‌شود. این مرحله به مرحله تشخیص فعالیت‌های گفتاری و گذشته این فعالیت‌ها بر روی روش‌های مختلف می‌شود. به این دلیل به این ترتیب، نه تنها بر روی تکثیر گفتار باید بحث سنجید.

1.1.2- پیشینه

در یک بخش معمول به تکثیر روش‌های مختلف تکثیر گفتار پرداخته شد. این سیستم در بخش‌های قبلی گفتار، به دست آمده است. در بخش پنجم هر روش‌های از سالهای اخیر، بر روی روش‌های از دنیای صوتی که فقط تجاری گفتار هستند، مشخص می‌شود و در بخش اولیه این فعالیت‌ها به دنبال پروانه‌های مشترک می‌شود.

آموزش روش‌های اولین بخش این ساله، تخمین تصمیم‌گیری است. این چنین مرحله با استفاده از استخراج و پردازش‌های از بخش‌های قبلی گفتار در مرور گفتار با گفتار خود را بدن آن تخمین تصمیم‌گیری می‌شود و گفتار از گفتار جدید می‌شود. این مرحله به مرحله تشخیص فعالیت‌های گفتاری و گذشته این فعالیت‌ها بر روی روش‌های مختلف می‌شود. به این دلیل به این ترتیب، نه تنها بر روی تکثیر گفتار باید بحث سنجید.

1.1.2- پیشینه

در یک بخش معمول به تکثیر روش‌های مختلف تکثیر گفتار پرداخته شد. این سیستم در بخش‌های قبلی گفتار، به دست آمده است. در بخش پنجم هر روش‌های از سالهای اخیر، بر روی روش‌های از دنیای صوتی که فقط تجاری گفتار هستند، مشخص می‌شود و در بخش اولیه این فعالیت‌ها به دنبال پروانه‌های مشترک می‌شود.

آموزش روش‌های اولین بخش این ساله، تخمین تصمیم‌گیری است. این چنین مرحله با استفاده از استخراج و پردازش‌های از بخش‌های قبلی گفتار در مرور گفتار با گفتار خود را بدن آن تخمین تصمیم‌گیری می‌شود و گفتار از گفتار جدید می‌شود. این مرحله به مرحله تشخیص فعالیت‌های گفتاری و گذشته این فعالیت‌ها بر روی روش‌های مختلف می‌شود. به این دلیل به این ترتیب، نه تنها بر روی تکثیر گفتار باید بحث سنجید.
می‌توان برای انتخاب پیشین مدل برای BIC سیده است. اگر در برخی از مدل‌ها به نوعی مدل‌های مشابه یا بسیار مشابه باشد، می‌توان بهتر از مدل برای BIC استفاده کرد.

مدل‌های فرضی در برخی از مدل‌ها

فرضیه‌های بردارهای X و Y می‌توانند در برخی از مدل‌ها بهتر باشد.

مدل بی‌بی‌سی

در برخی از مدل‌ها، مدل بی‌بی‌سی بهتر است.

مدل BIC

برای استفاده در برخی از مدل‌ها، مدل BIC بهتر است.

مدل‌های دیگر

برای استفاده در برخی از مدل‌ها، مدل‌های دیگر بهتر است.

1. Kullback-Leibler
2. Schwarz
3. Likelihood
4. Penalty Factor

منابع:
- Kullback-Leibler
- Schwarz
- Likelihood
- Penalty Factor
ان روش برای تشخیص پیشی به یک نقطه تغییر در دنباله صوتی است. همانطور که در شکل 3 در این روش کیک اندازه‌گیری برای پرتابگر در نظر گرفته می‌شود که به اندازه N_{BR} بردار و α در آن مؤثرونه است.

این پرتابگر به صوت مدارا برابر N_{BR} بزرگ می‌شود تا اینکه بر اساس معیار BIC که نقطه تغییر نپرمر تغییر می‌شود تا اینکه بیشتر شود. اگر قبل از رسیدن اندازه پرتابگر به N_{BR} نقطه با اشاره پنجم اولیه دوباره شروع می‌شود و اگر پس از رسیدن به N_{BR} نقطه با اشاره پنجم اولیه شروع می‌شود. بعد از رسیدن به N_{BR} نقطه با اشاره پنجم اولیه شروع می‌شود تا اینکه به پایان دنباله صوتی برسد. لازم است که همین بحث در مورد هر روش دارای بررسی دقیق گردد.

\[\text{BIC}(x, y) = \text{BIC}(M_2, Z) - \text{BIC}(M_1, Z)\]

\[= \log p(x | \hat{\mu}_x, \hat{\Sigma}_x) + \log p(y | \hat{\mu}_y, \hat{\Sigma}_y) - \log p(Z | \hat{\mu}_z, \hat{\Sigma}_z)\]

\[= \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]

که λ به عنوان دستگاهی تعریف می‌شود که بر اساس معیار BIC می‌باشد به این معنی که اگر $\lambda > 0$ ممکن است یک تناظر در داده‌ها هستند و عملکرد به معنی یافتن دیده‌نشده در داده‌ها به این معنی هستند. البته به دو مرحله اصلی این روش که در اینجا تعریف شدند.

در اینجا، BIC به عنوان دو معیار GLR به معنی BIC معیار BIC نشان می‌دهد.

\[\text{BIC} = \text{BIC}(M_2) - \text{BIC}(M_1)\]

اگر $\lambda > 0$, BIC به این معنی که اگر داده‌ها به دو توزیع گاوی تعریف شوند بقیه از حالی است که داده‌ها به دو توزیع گاوی تعریف شوند (مثلاً M_1) به عنوان دو نتیجه نیست و نقطه تغییر شکست (تغییر قوی) دارد. در غیر این صورت داده‌ها پیوستگی بوده و نقطه تغییر شکست (تغییر قوی) نداریم.

با توجه داشت که BIC به نهایت به BIC می‌رسد، نقطه تغییر آکستیکی در داده‌های صوتی کاربرد دارد. بنابراین لازم است این معیار برای کاربرد آن دانسته شود. بیشتر استفاده نمی‌شود، اگر این معیار، واریانس BIC ترکیبی بیشتری شده است λ. نقطه تغییر شکست BIC نشان می‌دهد یا BIC نشان می‌دهد. اگر نقطه تغییر شکست BIC نشان می‌دهد، b در نمایش داده می‌شود و BIC نشان می‌دهد. b به عنوان نمایش داده شده است.

\[\Delta \text{BIC}_a(x, y) = \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{b}{2} \log |\hat{\Sigma}_y| - \frac{n-b}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]

بر اساس BIC، نمایش داده می‌شود. نقطه تغییر آکستیکی در داده‌ها b نشان می‌دهد. نقطه تغییر شکست BIC نشان می‌دهد. b به عنوان نمایش داده می‌شود و BIC نشان می‌دهد. b به عنوان نمایش داده می‌شود.

\[\text{BIC}(x, y) = \text{BIC}(M_2, Z) - \text{BIC}(M_1, Z)\]

\[= \log p(x | \hat{\mu}_x, \hat{\Sigma}_x) + \log p(y | \hat{\mu}_y, \hat{\Sigma}_y) - \log p(Z | \hat{\mu}_z, \hat{\Sigma}_z)\]

\[= \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]

\[\text{BIC} = \text{BIC}(M_2) - \text{BIC}(M_1)\]

\[= log p(x | \hat{\mu}_x, \hat{\Sigma}_x) + log p(y | \hat{\mu}_y, \hat{\Sigma}_y) - log p(Z | \hat{\mu}_z, \hat{\Sigma}_z)\]

\[= \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]

\[\text{BIC} = \text{BIC}(M_2) - \text{BIC}(M_1)\]

\[= log p(x | \hat{\mu}_x, \hat{\Sigma}_x) + log p(y | \hat{\mu}_y, \hat{\Sigma}_y) - log p(Z | \hat{\mu}_z, \hat{\Sigma}_z)\]

\[= \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]

\[\text{BIC} = \text{BIC}(M_2) - \text{BIC}(M_1)\]

\[= log p(x | \hat{\mu}_x, \hat{\Sigma}_x) + log p(y | \hat{\mu}_y, \hat{\Sigma}_y) - log p(Z | \hat{\mu}_z, \hat{\Sigma}_z)\]

\[= \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]

\[\text{BIC} = \text{BIC}(M_2) - \text{BIC}(M_1)\]

\[= log p(x | \hat{\mu}_x, \hat{\Sigma}_x) + log p(y | \hat{\mu}_y, \hat{\Sigma}_y) - log p(Z | \hat{\mu}_z, \hat{\Sigma}_z)\]

\[= \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]

\[\text{BIC} = \text{BIC}(M_2) - \text{BIC}(M_1)\]

\[= log p(x | \hat{\mu}_x, \hat{\Sigma}_x) + log p(y | \hat{\mu}_y, \hat{\Sigma}_y) - log p(Z | \hat{\mu}_z, \hat{\Sigma}_z)\]

\[= \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y| - \frac{n}{2} \log |\hat{\Sigma}_y|\]

\[= \frac{1}{2} \lambda \left(1 - \frac{1}{d + 1} \right) \log n\]
2-3. تشخیص ساده گام با استفاده از روش کیستروال

تقلید کیستروال راه برای تخمین ساده گام فراهم می‌آورد.

فرز کیستروال به دنیایی از نمونه‌های صوتی که در فاز اول کار کنند و پایین‌ترین کراتونیشن‌های نامناسبی تا جایی که پایین‌ترین فاز‌های ضریب مشخص شود، بود. این فاز با استفاده از این می‌باشد که در هر آیه کیستروال که در میانگین‌های جمعیتی شوید. در نهایت کیستروال حقیقی یک سیگنال با فرکانس n(n+1) حاصل می‌شود.

\[
c[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |S(\omega)|e^{in\omega}d\omega
\]

(1)

که در این فرمول داریم:

\[
S(\omega) = \sum_{n=-\infty}^{\infty} s[n]e^{-j\omega n}
\]

(2)

3-2. روش‌های استخراج ساده گمان

کارهای بسیاری برای تخمین ساده گام اصلی انجام شده است. اگر از یک روش تخمین که در اثر استفاده از میانگین‌های بیشتری در زمان وسیعی انجام می‌شود که در هر دو زمانه دقیق باشد. سختی تشخیص شده در کیستروال فرکانس‌های بالا در طیف S(n), به دست آمده و با استفاده از فرکانس‌های بالای یک باشد. تشخیص‌های در راه‌های کمتر می‌باشد.

3-3. تشخیص ساده گام از طریق روش خود همبستگی

درک ما از ساده گام که شستارند که بر اساس دوره‌های از توالی بودن شکل موج در خود زمان، از میانگین معکوس این سیگنال را از روی شکل موج تشخیص داده. همان روش خود همبستگی است. یعنی به دست آمده خود همبستگی کیفیت سیگنال به یک عدد گروه خاص چیزی که با استفاده از MDFT(n) کمیک می‌شود. در این MDFT(n) همبستگی، یک سیگنال با فرکانس‌های فردی‌تر و فردی‌تر و می‌توانند به‌طور کلی از این MDFT(n) تخمین داشته باشند. توصیه‌های این می‌باشد.

\[
r(z) = \sum_{n=-\infty}^{\infty} s[n], s[n+z]
\]

(3)

1. Pitch Determination Algorithm (PDA)
2. Autocorrelation Function (ACF)
3. Cepstrum
4. Average Magnitude Difference Function (AMDF)
روش‌های تطبیق که بر أساس فاصله عمل می‌کردند، مثل روش MPCC تطبیق اساس BIC از ویژگی‌های کسب‌تر و پیش‌هر مدل استفاده می‌کردند. اما برای مدل‌های ویژگی‌های دیگر نیز بوده‌اند. از جمله این مدل‌ها همچنین نمونه‌های فرآیند که برای مدل‌های فردی و گروهی استفاده می‌شود. در اینجا بر ۳ دلیل از

روش‌های تطبیق استفاده می‌شده است:

- مقدار فرآیند گامی در شرایط و سطح مقدار متفاوت است.
- در زمان تطبیق ویژگی‌های گامی تطبیق نتیجه دارد.
- برای آنها باید از مدل MPCC استفاده می‌کرد.

از میان ویژگی‌های استفاده می‌کند دفته گامی تطبیق زیر است. در این تطبیق قطعات کوچک اطلاعات کافی است دست نیست.

پس از انجام جراحی، مقدار فردی از اطلاعات کافی است. برای مدل MD از دستگاه پرداخته است. از دستگاه پرداخته است. از دستگاه پرداخته است. از دستگاه پرداخته است.

مانند یافته‌ها و دقت کل را کاهش داده است. برای نمونه می‌توان به مدل‌های ویژگی‌های این تطبیق است. برای مدل‌های ویژگی‌های این تطبیق است. برای مدل‌های ویژگی‌های این تطبیق است. برای مدل‌های ویژگی‌های این تطبیق است.

gamma(f(x)) = \frac{c(x)}{x}

این تطبیق را روی نمونه تطبیق‌های فرآیند کمیم می‌کنیم، با توجه به شکل (۲) و عملکرد طبقه‌بندی است. برای این کاربرد

ما پاییز از < ۱ استفاده می‌شود که بهترین مقدار آن حدود ۱۰ به‌دست می‌آید.

\[
\text{Diff}(x) - |\text{pitch}(n+1) - \text{pitch}(n)|
\]

اگر یک مقدار مثال استفاده، توییف کمیم که اگر نبود به آن بیشتر بود، به عنوان تطبیق ویژگی‌های مقدار قرار می‌گیرد. ما این استفاده را به طور میانگین ۱/۷ بیشینه احکام بین فرآیند کمیم در مقدار

گرفته‌اند. در نهایت مقدار ویژگی پر مبتنی به احکام ویژگی بر اساس را داده می‌کنیم و با استفاده از آن شروع و پایان قطعه را به‌دست می‌آوریم. بر اساس این روش ما فقط تطبیق را به

عنوان تطبیق ویژگی‌های مقدار می‌گیریم. این روش سرعت بسیار

۲ Gamma Correction Function

۱ Prosodie
6. نتایج و بحث

پس از استفاده گفتگاه روش‌های از آزمایش‌های آزمایش‌هایی استفاده می‌شود، روش‌هایی از آزمایش‌هایی استفاده می‌شود. در این بخش به معنی این می‌باشد و از آزمایش‌هایی استفاده می‌شود. نتایج آن‌ها در این مقاله نیز بر اساس همین می‌باشد.

عملکرد سامانه می‌تواند در هر جمله ضبط شده، مورد بررسی قرار گیرد. اما نتایج معتبر آن است که نتایج آزمایش‌های این جمله از دادگاه‌های گفتگوی این معیارها و روشهای از آزمایش‌هایی استفاده می‌شود.

۲. تابع تحلیل گاما

برای کاهش خطای FA می‌توان از ایده‌ای که برای تحقیق به روشهای استفاده کنیم بر این صورت که همه BIC تغییرات بالاتر از آستانه‌ای را به عنوان نامرد تلقیه تغییر در نظر می‌گیریم و بعد از آن با استفاده از الگوی یک پنج‌جری کوچک به طول حدود ۱۵ صحت آن را بهرم‌سی می‌کنیم نتایج BIC آزمایش‌ها نشان داد که با اعمال این ایده به‌همان فاخصی در دقت امتداد خواهد شد و می‌توانیم گوییم که این ایده‌ای که اینده‌ای اساسی این مقاله است. در شکل (۴) فلورچات الگوریتم پیشنهادی نشان داده شده است.

![شکل (۴) فلورچات الگوریتم پیشنهادی نشان داده شده است.](https://example.com/image)

شکل (۴) فلورچات الگوریتم پیشنهادی نشان داده شده است.

تشخیص فاصله‌گذاری

استخراج مقادیر

پیامدهای ایجاد

بررسی صحت فاصله، به

BIC و سی‌سی‌سی

فلورچات تحقیق به روش پیشنهادی RPSS

در این قسمت با توجه به نمودارهای حاصل از نتایج تغییر RPSS پارامترهای مهم دخیل در محاسبات روش به‌هم‌بایی پیش‌آماده‌ای اثر باتری‌ها را بر نتیجه زمان‌بندی روش پیشنهادی بررسی می‌شوند. در این مقاله نتایج آزمایش‌هایی بر روی ۴ جمله از جلسات دادگاه‌های ارائه شده است. این جلسات به صورت متفاوت بر این پسندانه و سامانه روی قسمتی از آنها آزمایش شده است که نمایان آنها در جداول نتایج مشاهدات است و نموهای نیز با مقدار مبتنی ای ۴ تا ۳ تا بهره‌مند.

\[F = \frac{2 \cdot (1 - FD) \cdot (1 - FR)}{2 - FD - FR} \]

(۱۶)

Corpus

False Alarm

Total Amount of Detection

Missed Detection

Total Amount of True Change Points
ضبط آستانه تغییرات پارامتری است از ابتدای تغییرات فرکانس می‌باشد. اندازه‌گیری نسبت به بیشترین جهانی را مشخص کند. به‌ینگ این مقدار 7/6 باشد تغییرات که بیش از 7/6 بیشتری بسته‌بندی می‌شود. بنابراین پایدار تغییرات این پارامتر را بر دقت و سرعت پروری تمایل همکاری، در نمودارهای شکل (1) مشاهده می‌شود، هر چه این مقدار بیشتر باشد FA کاهش و MD آزادی می‌یابد و بالعکس. نتایج نشان می‌دهد که 1/75 مقدار خوبی برای این پارامتر است.

با توجه به نمودارها مشخص می‌شود که افزایش اندمازه‌پرای نصحیه کاملاً تأثیر بسیار زیادی روی دقت دارد که برای این ازمایشات مقدار حدود 2/0 بهترین دقت را نتیجه می‌دهد. جدول (1) مقدار پارامترهای دیگر در دقت و سرعت روش پیشنهادی را برای بررسی جهت همکاری با AMI به رای دست‌بام انتخاب شده و به بیشترین دقت نشان می‌دهد. بعد از آنکه با تنظیم پارامترهای

![شکل 8: اثر تغییرات مقدار آستانه بر زمان اجرای روش FR](image)

![شکل 9: اثر تغییرات مقدار آستانه بر زمان اجرای روش FD](image)

![شکل 10: اثر تغییرات مقدار آستانه بر دقت روش](image)
جدول 1. مقاييس دقة و سرعت روش پیشنهادی RPSS و روش مبتنی بر BIC با پانجاپری برگ شونده

<table>
<thead>
<tr>
<th>File name (sec)</th>
<th>%FD</th>
<th>%FR</th>
<th>%F</th>
<th>Run Time (sec)</th>
<th>%FD</th>
<th>%FR</th>
<th>%F</th>
<th>Run Time (sec)</th>
<th>Speed Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES2002a_p1</td>
<td>348</td>
<td>0.41</td>
<td>0.55</td>
<td>22.89</td>
<td>347</td>
<td>0.47</td>
<td>0.57</td>
<td>21.89</td>
<td>1.78</td>
</tr>
<tr>
<td>ES2002b_p2</td>
<td>349</td>
<td>0.45</td>
<td>0.59</td>
<td>22.94</td>
<td>344</td>
<td>0.49</td>
<td>0.61</td>
<td>21.94</td>
<td>1.76</td>
</tr>
<tr>
<td>ES2002c_p3</td>
<td>346</td>
<td>0.47</td>
<td>0.61</td>
<td>22.99</td>
<td>343</td>
<td>0.50</td>
<td>0.63</td>
<td>21.99</td>
<td>1.74</td>
</tr>
<tr>
<td>ES2002c_p4</td>
<td>347</td>
<td>0.45</td>
<td>0.60</td>
<td>22.97</td>
<td>342</td>
<td>0.48</td>
<td>0.62</td>
<td>21.97</td>
<td>1.76</td>
</tr>
</tbody>
</table>

جدول 2. پیشین مقایسه ی بارانمراهی دخیل در روش MD و FA

<table>
<thead>
<tr>
<th>File name (sec)</th>
<th>%FD</th>
<th>%FR</th>
<th>%F</th>
<th>Run Time (sec)</th>
<th>Speed Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES2002a_p1</td>
<td>345</td>
<td>0.40</td>
<td>0.54</td>
<td>22.51</td>
<td>1.68</td>
</tr>
<tr>
<td>ES2002b_p2</td>
<td>346</td>
<td>0.45</td>
<td>0.58</td>
<td>22.56</td>
<td>1.66</td>
</tr>
<tr>
<td>ES2002c_p1</td>
<td>344</td>
<td>0.46</td>
<td>0.59</td>
<td>22.54</td>
<td>1.66</td>
</tr>
<tr>
<td>ES2002d_p3</td>
<td>343</td>
<td>0.48</td>
<td>0.60</td>
<td>22.52</td>
<td>1.67</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

در این مقاله روش سریع و دارای باکتری RPSS برای ترکیب و خوشه‌بندی گویندگان ارائه شد. در این روش با استفاده از تغییرات فرکانس کام گفتار به تحقق گفتار پاترون‌های می‌شود. این BIC روی به نظر زمان انجام محاسبات بیشتر روش RPSS با استاده MD و FA زیست دارد اما دارای مابینی نیز هست. این به دلیل این که به سادگی اضافه شده که فعالیت بین BIC و MD محاسبه می‌شود این محاسبه می‌شود و بیشتر BIC با محاسبه بیشتر هم به دقت در حدود 70 یا 80 درصد که می‌شود با روش RPSS حداکثر در حدود 70 برلی بیشتر باید شد.

مراجع

