فرومولاسیون ذل رفع آلودگی L-Gel و بررسی واکنش جزء فعال آن (اوكسون)

با ترکیبات شی خردل

مهدی فرخی، حسین فخریان

دانشگاه جامع امام حسین(ع)، دانشکده و زیوی تکنولوژی، علوم پایه، گروه شیمی

(پذیرش: 09/12/15)

چکیده

L-Gel به عنوان یک واکنش‌یاب آلودگی پژوهش برای عوامل شیمیایی (BW) و عوامل بیولوژیکی (CW) به عنوان عامل اکسیده و کاهشی معرفی شده است. این واکنش‌یاب شیمیایی و غیررژیمی که می‌تواند با وجود یک ترکیب مخلوط به یک ترکیب مخلوط باید اجرا شود. این واکنش‌یاب به‌صورت مخلوط شدن و با افزادگی یک خاصیت متفاوتی زل از جمله گرانولوئید و چربی فرومولاسیون به‌صورت نهایی به‌دست آمده است. این فرومولاسیون شامل محصول اکسون و اکسون از حل کردن به‌طور کامل با واحد آلده کاهشی به ذل 15 درصد و زنی بوده است. در این دسته‌بندی در این واکنش‌یاب پروپان که ماده اصلی L-Gel می‌باشد. برای بررسی شیمی‌پیگشک و روغن/لونکس ترکیبات شی خردل از روش GC و H NMR استفاده شد.

کلیدواژه‌ها: L-Gel، اکسون، کاوشیل، رفع آلودگی، ماده پیگشک، کاوشیلی پیگشک، شیمی‌پیگشک، عوامل خردل، عوامل شیمیایی

Formulation of L-Gel Decontaminating Agent and Investigation of its Active Ingredient (Oxone) Reaction with Mustard Simulants

M. Farahipour, H. Fakhrain

Department of Chemistry, Imam Hossein University

Abstract

“L-Gel” is a decontamination reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. This reagent consists of an aqueous solution, Oxone, together with a fumed silica gelling agent Cab-O-Sil EH-5. L-Gel is relatively inexpensive, non-toxic, environmentally friendly, relatively non-corrosive, requires simple delivery system and maximizes contact time due to its thixotropic nature. Experiments to achieve optimized formulation for L-Gel were conducted. Different mixtures of Oxone and Cab-O-Sil were prepared and their viscosity and density were measured. The final optimized formulation of gel included 1.0M aqueous solution of Oxone gelled with 15% W/W of Cab-O-Sil EH-5. A stirring time of 30 minutes was achieved after which viscosity of gel increased over time. To be suitable for decontamination of chemical warfare agents, this formulation should be less viscous and stirred well before use. The effective agent for decontamination is Oxone, in which active ingredient is potassium peroxymonosulfate "KHSO₅". The reaction mixture was analyzed by GC and 'H NMR for HD simulants. In 3 minutes, Methyl phenyl sulfide (MPS) was converted to methyl phenyl sulfoxide and methyl phenyl sulfone as decontamination products with a higher reaction rate while ethyl chloro phenyl sulfide (CEPS) was converted with a lower rate leading to chloro ethyl phenyl sulfone in 2 hours.

Keywords: L-Gel, Oxone, Cab-O-Sil EH-5, Decontamination, Methyl Phenyl Sulfide (MPS), Chloro Ethyl Phenyl Sulfide (CEPS), Mustard Simulants, Chemical Warfare Agents
1. مقدمه

به‌منظور حفاظت در برابر عوامل‌های زیست‌محیطی، رنگ‌آمیزی از آب‌گیری نشان دهنده بار هوا و مواد غذایی آن حرارت و قندی در مواد اولیه کاربرد دارد. این روش در بافت‌های محیطی و بالینی مورد استفاده قرار می‌گیرد. رنگ‌آمیزی با روغن‌کریز و استفاده از مواد غذایی بدون تغییر رنگ و شکل در مواد اولیه کاربرد دارد.

2. ماده‌های مورد استفاده

- روغن‌کریز
- مواد غذایی با زیست‌محیطی
- مواد اولیه

3. روش‌های انتخاب

- چهار روش انتخاب
- انتخاب مواد غذایی با زیست‌محیطی
- استفاده از مواد اولیه
- استفاده از مواد غذایی

4. مثال‌های مورد استفاده

- روغن‌کریز با استفاده از مواد غذایی
- استفاده از مواد اولیه
- استفاده از مواد غذایی

5. نتیجه‌گیری

به‌منظور حفاظت در برابر عوامل‌های زیست‌محیطی، رنگ‌آمیزی از آب‌گیری نشان دهنده بار هوا و مواد غذایی آن حرارت و قندی در مواد اولیه کاربرد دارد. این روش در بافت‌های محیطی و بالینی مورد استفاده قرار می‌گیرد. رنگ‌آمیزی با روغن‌کریز و استفاده از مواد غذایی بدون تغییر رنگ و شکل در مواد اولیه کاربرد دارد.

1. Sandia Foam/Decon Green
در آزمایش‌های انجام شده توسط راب و مک کواری مشخص شد که اکسوسون باعث کاهش شدن VX به ابزار می‌شود.

\[
\text{MeP(=O)(OEt)SCH}_2\text{HDO} \rightarrow \text{MeP(=O)(OEt)SCH}_2\text{HDO} + \text{H}_2\text{O}
\]

عمل زل کننده در L-Gel کالیسبل قیسی سیلیکا یک کلونید سیلیکا به شکل سنگی (سیلیکون دی اکسید) تهیه شده توسط شرکت کیاتا می‌باشد. خلوت بالا، ساختار مترکم، سایز کمتر از میکرونز دیافراگمی بالایی، طبقه ماس بالا (380،۰۰۰ Da) و سطح آب‌پذیری و یزی‌کرایه هر نوع ۵ هزار نسبت به سابیر انواع کالیسبل می‌باشد. اندازه متوسط تران در ۵ هزار که فقط در

\[
\text{GC} \rightarrow \text{GC}
\]

حدود ۲۰ هزار میکرومتر است، دارای سطح خلیل بالایی از قیوسی سیلیکا که این سطح باعث این یادهایی در تیکوسیلوپروتئین و پایداری در کانسرها و ایجاد استحکام کننده سیلیکون و استیک‌هازهای آلی

\[
\text{GC} \rightarrow \text{GC}
\]

به‌صورت یک کانده می‌توان جامد زلاتینی یا گرانرودی بالا L-Gel به‌شتهای و نگه‌داری می‌شود. این ماده نمی‌تواند در اثر هیپنث پلاک‌دانه می‌باشد و برای بازیافت با استفاده از تجهیزات پاشا استفاده می‌شود. قبل یک است که L-Gel نازل های‌دکت با جنرال فورد، لی‌در به‌مبنای اسیدی L-Gel هم‌بندی باشند. (۱۹)

خرون حلال در آب بر سرعت هیدرولیز می‌شود. اما احتمال آن در آب اند سپارایی در محلول از طریق اکسیداپین و سیلیکون (HDO) و سیلیکون (HDO) اکسیدایز در بیشتر نسبت به سیلیکون است. بیشتر سیلیکون سیلیکونی رفع (L-Gel) از طریق اکسیدایز و سیلیکون (HDO) لی‌در است. بیشتر سیلیکون سیلیکونی رفع (L-Gel) باشند که محتوای اسیدی L-Gel به‌صورت یک کانده می‌توان جامد زلاتینی یا گرانرودی بالا L-Gel به‌شتهای و نگه‌داری می‌شود. این ماده نمی‌تواند در اثر هیپنث پلاک‌دانه می‌باشد و برای بازیافت با استفاده از تجهیزات پاشا استفاده می‌شود. قبل یک است که L-Gel نازل های‌دکت با جنرال فورد، لی‌در به‌مبنای اسیدی L-Gel هم‌بندی باشند. (۱۹)

4. Merck
5. DV-II + Pro Brookfield
6. Bruker ADVANCE DPX 250 MHz
7. Varian STAR 3400CX
8. SATURN 4D
3-2. اندازه‌گیری گرانیتروی بر روی سطح آزاد جسم

کریو

روش سطح آزاد جسم کریو بر اساس قانون استوک، رابطه (1) می‌باشد.

\[U = \frac{gD_0^2(p - \rho)}{18} \]

\[p = \text{سربت حاد} \]

\[D_0 = \text{قطر جسم کریو} \]

\[p = \text{چگالی جسم کریو} \]

\[\rho = \text{گرانیتروی سیال} \]

پرای اندازه‌گیری گرانیتروی باین روش 7 میلی‌لیتر داخل لوله آزمایش ریخته و در مایه لوله در علائم با فاصله 7 سانتی‌متر گذاشته شد. گیاه فلزی و زن کریو و قطر 6/4 میلی‌متر که تیزه‌شده بود از بالای سیستم درست روي سطح لل در وسط سیستم رواشد. وقتمگوی به علائم اول رصد به استفاده از گرینیترومی، زمان حرکت گیاه در فصل به بنو علائم این‌داده کرای و سپس با ماهیت سربت و با استفاده از قانون استوک، گردن، سربت محسوس گردید.

4-2. اندازه‌گیری گرانیتروی بایستفاده از دستگاه

ویسکومتر بر روی کلید

ویسکومتر دارای یک میله فلزی به نام استندرد DS-II + Pro ساخت که این میله درون سیال با سرتایت‌های مختلف در حال چرخش است و در اثر چرخش آن، گرانیتروی اندازه‌گیری می‌شود. هرچه سرعت چرخش استندل درون سیال بیشتر باشد، دقیقه فاصله‌های خروجی سنجش بیشتر است.

استفاده از این روش، نشان دهنده نحوه تغییرات گرانیتروی زئوپلیسومیکی که شیب آن در اثر هزینه در حال گسترش می‌باشد. نسخه است: زیرا وقتی شبکه زئ در حال تغییر
در اثر هیژدن به دلیل خاصیت تیکسوتروپی زل، گراندوی کامف
می‌باشد ولی وقتی نمونه در گیاه‌ها باشد، گراندوی با سرعت
بیشتری کاهش می‌یابد. بطوری که در زمان و شرایط هیژدن
یکن، دارای گراندوی کمتری نسبت به حالت که در حضور
هوا است، می‌باشد (شکل (1)). سرعت هیژدن در شکلی شده
سیده‌ای زل مهم دارد (شکل (2-الف، ب، چ)). ابتدا نمونه
یکن به مدت 10 دقیقه در شکل (2-ب) توسط همزین دستی و در
شکل (2-ب) توسط همزین متغیری هیژدن شد و گراندوی
الهی آنها افزایش یافت. چون قدرت و سرعت هیژدن توسط
همزین دستی ممکن است همزین متغیری می‌باشد، شبکه همنوز
کامل شده و در حال کامل شدن می‌باشد. بنابراین گراندوی آن
نسبت به شکل (2-ب) که در زمان مدت هیژدن گستران است،
کمتر ویل در اثر ماکندر و تکامل شبکه، گراندوی در حال
افزایش است. مدت زمان هیژدن نیز در تکامل شبکه صورتی
شده زل مهم می‌باشد. با توجه به این که مدت زمان هیژدن اولیه در
شکل (2-چ) هست که افزایش می‌باشد. شبکه نسبت به
(ب) کامل و دارای گراندوی بیشتری می‌باشد. گراندوی کامفلی
در شکل (2-چ) به دلیل هیژدن و خاصیت تیکسوتروپی زل
می‌باشد. بطوری که اگر نمونه به مدت 30 دقیقه می‌باشد، بطوری که
در اثر هیژدن به دلیل قرار گیری نمونه در مدت 30 دقیقه می‌باشد، بطوری که
در حال کامل شدن است و ار تقریبی چون زل بدون حرکت

شکل 1 ناتوبر هوا بر روی گراندوی نمونه 8 (محلول 1 مولار اوتیکی شامل 10% وزنی کاپوسیل)
شکل ۳. تأثیر درصد کالسیول بر روی گرانوتی نمونه‌های حاوی محلول ۱ مولار اوکسون و ۸/۱۴%, ۱۶/۱۵%, ۱۸/۱۷% و ۱۸/۱۸% کالسیول

شکل ۴. تأثیر درصد کالسیول بر روی گرانوتی بیشینه نمونه‌های حاوی محلول ۱ مولار اوکسون و ۸/۱۴%, ۱۶/۱۵%, ۱۸/۱۷% و ۱۸/۱۸% کالسیول

شکل ۵. تغییرات گرانوتی زل نیمه‌جمد شده نمونه B (فرمولاسیون بهینه) شامل محلول ۱ مولار اوکسون و ۱۵/۱۵% وزنی کالسیول در اثر هیدزدن

شکل ۶. تأثیر هیدزدن بر روی گرانوتی نمونه B (فرمولاسیون بهینه) شامل محلول ۱ مولار اوکسون و ۱۵/۱۵% وزنی کالسیول) (الف) هیدزدن توسط همزئین دستی به مدت ۲ دقیقه و سپس سکون نمونه، (ب) هیدزدن توسط همزئین مغناطیسی به مدت ۱۰ دقیقه، سپس سکون نمونه به مدت یک ساعت و دو ماه بعد، همزئین (ج) هیدزدن توسط همزئین مغناطیسی به طور پیوسته
نتیجه‌گیری را نیز در مورد محصولات رفع آلودگی توسط MPS اکسون داشت.

(CEPS) رفع آلودگی کلرواتیل فنیل سولفید (MPS) کرومانتوگرام خالص و مخلوط آن با اکسون پس از ۳ دقیقه و ۲ ساعت در شکل (ج) نشان داده شده است. همان‌طور که در کرومانتوگرام (الف) مشخص است، MPS خالص در اثر زمان بیانداری در حدود ۱۶ دقیقه می‌باشد. MPS با دو تجربه اکسیداسیون پراکنده فعل شده نیز منجر به همین دو ترکیب با زمان‌های بیانداری مشابه شده است که بر اساس آنالیز GC-MS اکسیداسیون شکسته می‌شود. سولفون تجزیه شده شده با توجه به شرایط مشابه می‌توان همین MPS (Pure) کرومانتوگرام-mounted فنیل سولفید (الف) خالص و (ب) مخلوط آن با اکسون (۵۰۰ مول/لیتر) پس از ۳ دقیقه.

شکل ۶: کرومانتوگرام CEPS (الف) خالص و (ب) مخلوط آن با اکسون پس از ۳ دقیقه، (ج) واکنش با اکسون پس از ۲ ساعت.

شکل ۷: کرومانتوگرام کلرواتیل فنیل سولفید (الف) خالص، (ب) واکنش با اکسون پس از ۳ دقیقه، (ج) واکنش با اکسون پس از ۲ ساعت.
طیف‌های 1H NMR مولکول آن (20/100 گرم) در حضور محلول 2 میلی مول اکسون در یک میلی لیتر آب بعد از 15 دقیقه واکنش و رفع از نشان داده شده. طیف 1H NMR محلول اکسون در حضور گروه CH$_3$ نشان داده شده است. طیف جنگلگی سنتی و جابه‌جایی شیمیایی معکوس و گروه CH$_3$ و همچنین یک دیگر کلروپلات همراه با ترکیب اصلی که باعث بهبود در سنتز ترکیب مورد استفاده قرار گرفته است، را نشان می‌دهد (شکل 8-الف).

با مقایسه طیف‌های در شکل (8-الف و ب) و یک دیگر جدید با چندرنگاره سنتی مربوط به یک نوع گروه CH$_3$ و یک دیگر جدید مربوط به لیزه کنی کامل مشخص است. احتمال وجود محصول اکسونی با اکسون بیشتر از 40 نمونه است. برای تعیین محصول حاصل از رفع اولویتی طیف در شکل (10ب-ب) با طیف‌های محصولات اختلالی حاصل از واکنش که با استفاده از نرم‌افزار ChemOffice تهیه شده (شکل 9). مقایسه شد.

![شکل 8](https://www.example.com/image8.png)
شكل 9. نتيجة تحليلات احتمالية حصلت في ميناء كابردين بالكهرباء والكلور والكلور فينيل سولفيد باستفادته من مركبات أكسيدة.

