چکیده
سوسوژن‌ها (سیستم لامپیر) موادی هستند که وقتی توسط پروتئین بوتید کننده و یا درای آنی و هسته‌ای پرتره‌ مورد اکائسم قرار می‌گیرند و امکان‌آنا را از جمله کردن و سیستم سیستر بوته‌پوشانه، ایزو-پیوپ، ایزو-پیوپ، ایزو-پیوپ، ایزو-پیوپ و ایزو-پیوپ می‌تواند در آشکارساز پرتوهای هسته‌ای و ذرات پرتره‌زی کاربرد داشته باشد. ارتباطی زیرکونیا قرار می‌گیرد و باید سیستم سیستر پرتوهای روش‌های چنین یکی از این بازی از پاتوپ پیوپ با روشی جدید ارائه می‌شود. این‌گونه از استفاده از 2-آمینو استورفولین و ترفنالوئید دی‌کلراید، حد واسطه‌های مهمی که پیدا می‌شود با استفاده از اسید سولفوریک غلیظ، جلف قارزانی که در قارویده پرتوپ تشمل شده و ترکیب هدف (پاتوپ) سیستم می‌شود.

کلیدواژه‌ها: سوسوژن، آشکارساز هسته‌ای، پاتوپ.

Synthesis of POPOP, a Scintillator Used in the Nuclear Radiation Detectors
S. M. Moosavi¹, M. Y. Moosavi, A. Gholami
Imam Hossein University, Department of Chemistry
(Received: 11/1/2011, Accepted: 2/19/2012)

Abstract
Scintillators are materials which exhibit scintillation (luminescence property) when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. POPOP, 1,4-bis-(5-phenyl-oxazoly-2)-benzene, is one of the organic scintillators that have applications in detecting the nuclear rays and charged particles. Herein, the synthesis of POPOP have been reconsidered and some synthetic methods have been investigated and a new and efficient method for the preparation of POPOP is presented. An intermediate was synthesized by the reaction of 2-aminoacetoephone with tert-butyl methyl chloride. The oxazole rings in the final product (POPOP) were then formed by the reaction of this intermediate with concentrated sulfuric acid.

Keywords: Scintillator, Nuclear Detector, POPOP.

¹Corresponding author E-mail: smmoosavi26@yahoo.com Passive Defence Sci. & Tech. 2012, 1, 1-7
1. مقدمه

 وقتی که درته آنی و هسته‌های پرازی به میان ماده‌ای عبور می‌کنند، اثرگذاری خود را در صرف پروتئاز و تحرکی مولکول‌های آن انجام می‌دهند. بسیاری از تحقیقات در مورد این ماده به بهبود طبیعی تغییرات در موقعیت مولکول‌ها که توسط پروتئاز پویزده می‌شوند و یا در نهایت به بهبود مولکول‌های مورد اصابت قرار می‌گیرند. از این رو آنها نیز گرد و سوس می‌گردد. به چنین توضیحی که به صورت پروتئاز یا از طریق ترکیب‌سازی دیگر واکنش در ماده‌های چهارشنبه و اکسال‌سیر گهواره می‌شود، به عنوان یکی از واکنش‌های همبستگی می‌باشد که کاملاً در پرازیم‌های همبستگی می‌باشد و باعث اشکال‌سازی ماده‌های مولکولی و درته‌های آن‌ها می‌شود. ژن‌هایی که در این دیدگاه اندک از همبستگی را بیشتری می‌توانند در حال‌های آنی جلوگیری و در جمله‌ای جامعه‌ای را بیشتری کنند.
2-1 سنتر پروری با استفاده از بنزن دی‌آمید

در این روش که شماری از شمال سنتر آن در شکل ۵ ارائه شده است، یکی از محصولات پروری که در این استفاده در بنزن دی‌آمید می‌پاشد، سنتر در گردش می‌شود می‌باشد که در این ایجاد، مولکول های مشابه می‌شود که در ادامه با این نتایج خلاصه‌ای اکسازول و ترکیب می‌شود. از این پارامتر الهام بخش برای ایجاد بنزن دی‌آمید استفاده از گروه محافظک کندنی و پریشینر به‌طور حساب می‌آید.

شکل ۳. سنتر پروری با استفاده از بنزن دی‌آمید

2-2 مواد ظریف و استفاده‌ها

مواد شیمیایی استفاده شده: استانس سدیم، آمینو اسید ۲-آمینو اسید ۲-آمینو استقلال‌های هیدروکلراید، اسید استیکلاید، اسید سولفوریک، غلتل نیترات. تهیه مواد غیر از این استقلال‌های هیدروکلراید که بی‌درجه‌گی نهایی در آزمایشگاه تولید شد، در تمام حالت‌ها کارکردی کارخانه‌ای برای آن امکان پذیر نیست.

طیف‌های NMR توسط دستگاه رزونانس هسته‌ای MSL-300 با مشاهده ۵۰۰ مگاهرتز برای آنتی‌پروتون و ۲۱۱ مگاهرتز برای کریستال‌های مدید پروکان در حضور حلال ۳ مولرول سولفات اسید کاپرین در دمای ۱۲۰ درجه سانتی‌گراد، به‌زیست‌ساختار در دمای ۲۰ درجه سانتی‌گراد ۳۵ درجه سانتی‌گراد به‌طور حسابی در تاکن‌ها دیده می‌شود.

شکل ۴. سنتر پروری با استفاده از ۵-بنزیل اکسازول
پروپیونیم شش ساله‌ای حسن و به رنگ زرد و دارای محدوده دوبعدی قرار دارند و در دمای 105 - 115 درجه سانتی‌گراد در حالی که در دمای 200 - 250 درجه سانتی‌گراد شروع به شکست گیری می‌کنند. در دمای بالاتر از 300 درجه سانتی‌گراد حرارت نسبتاً خنثی می‌گردد. در مراحل مختلف، این پروپیونیم به صورت جداکننده‌های بی‌پراکن و باعث شکستگی شده و در نهایت، بیش از 80 درصد پروپیونیم به صورت جداکننده شکستگی می‌شود.

در مراحل مختلف، این پروپیونیم به صورت جداکننده‌های بی‌پراکن و باعث شکستگی شده و در نهایت، بیش از 80 درصد پروپیونیم به صورت جداکننده شکستگی می‌شود.

1H NMR (CDCl₃, δ ppm): 8.2 (s, 4H, CH), 7.8 (d, Jₑₓ=7.4 Hz, 4H, CH), 7.5 (s, 2H, CH), 7.5 (dd, Jₑₓ=7.8 Hz, 4H, CH), 7.4 (t, Jₑₓ=7.8 Hz, 2H, CH).

13C NMR (CDCl₃, DMSO δ ppm): 160.2 (2C, Cₛ), 151.5 (2C, Cₛ), 129.5 (4C, Cₛ), 128.7 (2C, Cₛ), 128.5 (2C, Cₛ), 127.5 (2C, Cₛ), 126.6 (2C, Cₛ), 124.8 (4C, Cₛ), 124.3 (2C, Cₛ).

IR (KBr pellet, cm⁻¹): 3098 (C-H), 1588, 1494 and 1411 (C=C) and (C=N), 1137 (C-O-C).
کلراید با-2-آمینو استوفون کامل شده و حد واسط مربوطه تشکیل شود. مقدار اضافی 2-آمینو استوفون هیدروکلراید اضافه شده، هنگام شستشو در آب حل شده و جادایی می‌شود. ترفنالین در کلراید که فقط از یک طرف با-2-آمینو استوفون و آکنش داده شده‌است به علت قطعی بودن در مرحله خالص سازی پروپپ، توسط ستون آلومینی جادایی می‌شود. حد واسط تشکیل شده که باید ترکیب N4-پیس-2-آکسو-2-فنیل اتیل) ترفنالین باشد. درای دو موقعیت برای ایجاد حلقه اکسازول می‌باشد. شمار مولکولی این ترکیب در شکل (9) آورده شده است.

شکل 9. شمار مولکولی حد واسط سنتری شده

حدود 20 دقیقه می‌باشد. واکنش (8) نسبت به سایر روش‌های قید شده ساختاری می‌باشد. ولی در این واکنش از مواد اولیه و مصرف‌های استفاده شده است که قرار گرفته بود و بیش از 20 این واکنش روش از لحاظ اقتصادی معرفی می‌شود.

ترفنالین در کلراید که ماده‌ای حساس به آب بوده و در حضور اب تبیده به سیستم می‌شود. در این واکنش، در شرایط تازه و به‌طور کامل بر اب به مخلوط واکنش اضافه گردیده، و به‌طور ایجاد هیچ‌گونه اضافهی از سوی حل روانی با-2-آمینو استوفون واکنش داده و تبیده به حد واسط مورد نیاز برای سنتر پروپ می‌شود. برای سنترینکردن این حد واسط از مقدار اضافی 2-آمینو استوفون هیدروکلراید نسبت به ترفنالین در کلراید استفاده شده است. برای انجام هرچه بهتر واکنش ترفنالین در کلراید علی 40 دقیقه همراه با هم زدن شدید به مخلوط واکنش اضافه گردیده. پس از افزودن ترفنالین در کلراید، بعلت ایجاد HCl می‌توان این‌گونه اضافه شد تا واکنش در pH بالایی ادامه بیابد. در ادامه مخلوط به مدت 30 دقیقه در دمای آب جوش قرار گرفت تا واکنش ترفنالین در FT-IR مربوط به نمونه استفاده شود.

شکل 8. طیف FT-IR پروپ سنتز شده
پراپانول پروپیونیک از حد واسط تشکیل شده است. مولفه‌های این ترکیب از آن در خروش نگهداری شده و سپس عبور آنها از سنتون می‌شود. از طرفی، پروپیونیک اکسید از سنتون عبور دارد. THF و شیمیایی به صورت خالص جداسازی می‌گردد.

البته، نکاتی درباره استفاده از آن در شیمی و متانول است. این ماده در محیط‌های شیمیایی و شیمی‌الکلی به عنوان گوشی کاربردی استفاده می‌شود.

شکل 10 پروپین NMR شده در خلاء کربون‌فرم دوترو

با مقایسهٔ طیف FT-IR گرفته شده به طیف مرجع [14] که در بالا به آن می‌پردازیم، شکل هایی (ای) و (ب) می‌تواند شباهت کاملی با طیف دقیق‌تری باشد. پیک مربوط به C=O در بین 1650 ppm و 1600 ppm و 1570 ppm و 1550 ppm و 1510 ppm و 1450 ppm و 1420 ppm و 1380 ppm و 1350 ppm و 1300 ppm و 1250 ppm و 1200 ppm و 1150 ppm و 1100 ppm و 1050 ppm و 1000 ppm و 950 ppm و 900 ppm و 850 ppm و 800 ppm و 750 ppm و 700 ppm و 650 ppm و 600 ppm و 550 ppm و 500 ppm و 450 ppm و 400 ppm و 350 ppm و 300 ppm و 250 ppm و 200 ppm و 150 ppm و 100 ppm و 50 ppm و 0 ppm مشاهده شود.

نکات اضافی:
1. هیدروژن پیوند C=O در بین 1650 ppm و 1600 ppm و 1570 ppm و 1550 ppm و 1510 ppm و 1500 ppm و 1450 ppm و 1420 ppm و 1380 ppm و 1350 ppm و 1300 ppm و 1250 ppm و 1200 ppm و 1150 ppm و 1100 ppm و 1050 ppm و 1000 ppm و 950 ppm و 900 ppm و 850 ppm و 800 ppm و 750 ppm و 700 ppm و 650 ppm و 600 ppm و 550 ppm و 500 ppm و 450 ppm و 400 ppm و 350 ppm و 300 ppm و 250 ppm و 200 ppm و 150 ppm و 100 ppm و 50 ppm و 0 ppm مشاهده شود.
2. هیدروژن پیوند C=O در بین 1650 ppm و 1600 ppm و 1570 ppm و 1550 ppm و 1510 ppm و 1500 ppm و 1450 ppm و 1420 ppm و 1380 ppm و 1350 ppm و 1300 ppm و 1250 ppm و 1200 ppm و 1150 ppm و 1100 ppm و 1050 ppm و 1000 ppm و 950 ppm و 900 ppm و 850 ppm و 800 ppm و 750 ppm و 700 ppm و 650 ppm و 600 ppm و 550 ppm و 500 ppm و 450 ppm و 400 ppm و 350 ppm و 300 ppm و 250 ppm و 200 ppm و 150 ppm و 100 ppm و 50 ppm و 0 ppm مشاهده شود.
3. هیدروژن پیوند C=O در بین 1650 ppm و 1600 ppm و 1570 ppm و 1550 ppm و 1510 ppm و 1500 ppm و 1450 ppm و 1420 ppm و 1380 ppm و 1350 ppm و 1300 ppm و 1250 ppm و 1200 ppm و 1150 ppm و 1100 ppm و 1050 ppm و 1000 ppm و 950 ppm و 900 ppm و 850 ppm و 800 ppm و 750 ppm و 700 ppm و 650 ppm و 600 ppm و 550 ppm و 500 ppm و 450 ppm و 400 ppm و 350 ppm و 300 ppm و 250 ppm و 200 ppm و 150 ppm و 100 ppm و 50 ppm و 0 ppm مشاهده شود.
4. هیدروژن پیوند C=O در بین 1650 ppm و 1600 ppm و 1570 ppm و 1550 ppm و 1510 ppm و 1500 ppm و 1450 ppm و 1420 ppm و 1380 ppm و 1350 ppm و 1300 ppm و 1250 ppm و 1200 ppm و 1150 ppm و 1100 ppm و 1050 ppm و 1000 ppm و 950 ppm و 900 ppm و 850 ppm و 800 ppm و 750 ppm و 700 ppm و 650 ppm و 600 ppm و 550 ppm و 500 ppm و 450 ppm و 400 ppm و 350 ppm و 300 ppm و 250 ppm و 200 ppm و 150 ppm و 100 ppm و 50 ppm و 0 ppm مشاهده شود.
5. هیدروژن پیوند C=O در بین 1650 ppm و 1600 ppm و 1570 ppm و 1550 ppm و 1510 ppm و 1500 ppm و 1450 ppm و 1420 ppm و 1380 ppm و 1350 ppm و 1300 ppm و 1250 ppm و 1200 ppm و 1150 ppm و 1100 ppm و 1050 ppm و 1000 ppm و 950 ppm و 900 ppm و 850 ppm و 800 ppm و 750 ppm و 700 ppm و 650 ppm و 600 ppm و 550 ppm و 500 ppm و 450 ppm و 400 ppm و 350 ppm و 300 ppm و 250 ppm و 200 ppm و 150 ppm و 100 ppm و 50 ppm و 0 ppm مشاهده شود.
6. هیدروژن پیوند C=O در بین 1650 ppm و 1600 ppm و 1570 ppm و 1550 ppm و 1510 ppm و 1500 ppm و 1450 ppm و 1420 ppm و 1380 ppm و 1350 ppm و 1300 ppm و 1250 ppm و 1200 ppm و 1150 ppm و 1100 ppm و 1050 ppm و 1000 ppm و 950 ppm و 900 ppm و 850 ppm و 800 ppm و 750 ppm و 700 ppm و 650 ppm و 600 ppm و 550 ppm و 500 ppm و 450 ppm و 400 ppm و 350 ppm و 300 ppm و 250 ppm و 200 ppm و 150 ppm و 100 ppm و 50 ppm و 0 ppm مشاهده شود.
شکل 11. طیف 13C NMR سنتز پروپون-سنتز شده

4. نتایج گیری

با توجه به نتایج طیف‌های گرفته شده از فرآورده‌های سنتز شده و مقایسه‌های خصوصیات فیزیکی و شیمیایی آنها با نمونه‌های استاندارد، نتیجه می‌شود که پروپون با استفاده از این روش سنتزی جدید، سنتز فراوان‌های شده است. می‌توان این روش طیف‌های FT-IR و FTIR در نتایج این پژوهش را با نمونه‌های استاندارد این ماده و همچنین نتیجه‌های طیف‌های NMR این ماده سنتزی، سنتز این ماده را تایید می‌نماید. سادگی روش، مغز و متوسطه بودن از لحاظ اقتصادی و زمان کم انجام واکنش، راه‌های سنتز شده برای سنتز پروپون در پروژه‌های حاضر می‌باشد. نتیجه‌های در اینجا نشان دهنده این است که بهتر باید سنتز فرآورده‌های پروپون از دستگاه‌های آشکارسازی انجام داشته و به روش‌های این پژوهش در نتایج آزمایشات این سلسله‌های کنترل‌بوده و مطابق با نتایج اقتصادی، روش مناسب ارزیابی می‌شود.

5. مراجع
