چکیده
سوسوژن (سیستم لاورا) موادی هستند که وقتی توسط پرتها یا نیزه‌کننده و یا با ذرات اتمی و هسته‌ای پرتاب شده می‌گردد. از آن‌ها یکی از موارد سوسوژن آنی می‌باشد که در اشکاراسازی پرتوهای هسته‌ای و ذرات پرتابی کاربرد دارد. این والا سنتز پرتوهای توجه ورودی قرار گرفته و برای سنتز پرتوهای روش‌ها تا به حال ارائه شده است. در این مقاله سنتز پرتوپاژی روشی جدید ارائه می‌شود. این الگو با استفاده از به ترتیب هیدروکسی (دوره) سنتز کلیدواژه‌ها: سوسوژن، اشکاراساز هسته‌ای، پرتوپاژی.

Synthesis of POPOP, a Scintillator Used in the Nuclear Radiation Detectors
S. M. Moosavi¹, M. Y. Moosavi, A. Gholami
Imam Hossein University, Department of Chemistry
(Received: 11/12/2011, Accepted: 01/10/2012)

Abstract
Scintillators are materials which exhibit scintillation (luminescence property) when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. POPOP, 1,4-bis-(5-phenyl-oxazolyl-2)-benzene, is one of the organic scintillators that have applications in detecting the nuclear rays and charged particles. Herein, the synthesis of POPOP have been reconsidered and some synthetic methods have been investigated and a new and efficient method for the preparation of POPOP is presented. An intermediate was synthesized by the reaction of 2-aminoacetophenone with terphethaloyl dichloride. The oxazole rings in the final product (POPOP) were then formed by the reaction of this intermediate with concentrated sulfuric acid.

Keywords: Scintillator, Nuclear Detector, POPOP.

¹Corresponding author E-mail: smmoosavi26@yahoo.com Passive Defence Sci. & Tech. 2012, 1, 1-7
مقدمه
وقتی که ذرات اتمی و هسته‌های پرازدری از میان ماده‌ای عبور می‌کنند، اثری خوراک یا سرعت بیولوژیک و تحریک مولکول‌های این مواد نمی‌باشد. مسیرهای مولکول‌های هسته‌ای و هسته‌های پرازدری مواد اصلی قرار می‌گیرند. از طرفی آن‌ها جدیتر و سیم‌تر بوده و به‌صورت باریک‌تر کوچکی از نور منتشر می‌کنند که این عمل در ناحیه‌های میکرو انجام می‌گردد. و باعث شکستگی مواد هسته‌ای و ذرات اتمی پرازدری می‌شود.

1- سنتز پروپیونیک اسید اکسازول-۲- (ب) بنزیولیک

در این روش از میکروسلول‌های استیت استفاده شده است که بکار می‌رود.

2- سنتز پروپیونیک اسید اکسازول-۲- (ب) بنزیولیک

از پیوند‌های اشکامل‌های پرازدری در مولکول‌های شیمیایی، به‌وسیله انرژی فضایی این مواد تولید می‌گردد. این امر از نظر پیشرفت مولکول‌های سیاه است.
2-1 سنتز پوپاب با استفاده از بینزن دی آمید

در این روش که شما فرمولی آن را به صورت شده است، با استفاده از میکسیکا شهر و جدول حمله از طرف نیترزورها ترکنده می شود که در ادامه با ایجاد حلقه های اکسازول ترکیب می شود. این روش به خاطر استفاده از گروه محترم کندنی و یید روش سخت و پربرقی شیمی حساب می شود.

شکل 2 سنتز پوپاب با استفاده از بینزن دی آمید

2-2 سنتز پوپاب با استفاده از 5-بنزیل اکسازول

در این روش از ماده اولیه 5-فنیل اکسازول استفاده شده است که در ادامه با ایجاد حلقه اکسازول بوده و بنا برای اینکه با اکسازول جایگزینی با گروهی یک ترکیب با ایجاد حلقه اکسازول نمی شود، میتواند زیرا حلقه اکسازول مورد نیاز در استخراج فناوری هدف (پوپاب) در مواد اولیه وجود داشته باشد. پس این مواد اولیه استفاده در این روش گرانی به دو از لحاظ اقتصادی مقرن به صورت نمی باشد. شما فرمولی سنتز پوپاب با استفاده از این روش در شکل 2 (4) در آگاه شده است.

شکل 3 سنتز پوپاب با استفاده از 5-بنزیل اکسازول

1. Bruker ADVANCE DXP 300 MHz
2. Perkin Elmer Spectrum

ماده شیمیایی استفاده شده: استان سیدم، 2-آمینو استونون، هیدروکلراید، اسید استیک، ترکنده الکل، اسید سولفوریک، ترکیبی یک و دوم نیترزورهای میارا، نهایی از ترکیب میارا، چربی فراورده های کارخانه، مکر آلمان. می‌باشد.

فناوری NMR توسط دستگاه ژورنال مغناطیسی هسته مدل پوزکر 1 توسط دستگاه ژورنال مغناطیسی هسته مدل پوزکر 1 با قدرت میدان 300 مگاهرتز برای برتوکر و 400 مگاهرتز برای کرين در حضور حلول در کلرکلر و در میان نمایش دیوترا به دست آمد.

فناوری FT-IR با استفاده از دستگاه طیف‌سنج مادون قرمز پرکین مدل کریک 1 به دست آمد.
۲-ستنزوپروب

\[
\begin{align*}
\text{N} & \text{H} \\
\text{CH}_3 & \text{COOH} \\
\text{CH}_2\text{COOH} & \text{Na}
\end{align*}
\]

\[
\text{H}_2\text{SO}_4
\]

۳-نتایج و بحث

پروب ماده‌ی جانبی به رنگ زرد و دارای محلول‌دهی زرد بوده و رنگ‌های دارای قطعه‌های زرد بوده و ۱۵۴grad C در Zanmiaszaku استفاده شده است که در ۱۵ grad C قرار گرفته به دلیل استفاده از ۱۵ grad C C

\[
\begin{align*}
\text{H}_2\text{SO}_4 & \text{Wter bath} \\
30 \text{minutes}
\end{align*}
\]

۲-ستنزوپروب

۲-ستنزوپروم
کلراید با 2-آمینو استونفون کامل شده و حد واسط مربوطه تشکیل شد. مقدار اضافی 2-آمینو استونفون هیدروکلراید اضافه شد. هنگام- یک اسلوک 2-آمینو استونفون و اکشت داده. بیلیمی بود. در مرحله نخالسی سازی پرپروپ، توسط استونفون آمونیا جاده‌ای می‌شوند. حد واسط تشکیل شده که با ترکیب N₂، N₁ پرپرو-2-فوئین (N₁) ترفنالامید باشد. دارای دو موقعیت برای ایجاد حلقه اکسارول می‌باشد. شمای مولکولی این ترکیب در شکل 9 آورده شده است.

شکل 9. شمای مولکولی حد واسط سنتز شده

حدود 30 دقیقه می‌باشد. و یاکشت (1-2) نسبت به سایر روش‌های قید شده ساده‌تر می‌باشد. و این واکنش از ماده اولیه و مصرف‌داری استفاده شده است که قرار گرفته‌اند و پیامدهای این روش از لحاظ اقتصادی مقرن به صرفه‌جویی می‌باشد.

ترفنالامید که کاملاً حساس به آب بوده و در حضور آب تبدیل به استونفون می‌شود این واکنش. در شرایط حساس به بی‌سیول، واکنش واکنش اضافه گردیده و ندیم ایجاد نمی‌گردد. مزارعتی از سوی حلال واکنش، با 2-آمینو استونفون واکنش داده و تبدیل به حد واسط مورد نیاز برای پرپروپ می‌شود. برای سنتز واکنش اضافی 2-آمینو استونفون هیدروکلراید نسبت به ترفنالامید در کلراید استفاده شده است. برای انجام هر جه مصرف کلراید ترفنالامید با 40 دقیقه همراه با هم خلوت شده و به مخلوط واکنش اضافه گردیده. پس از افزودن ترفنالامید الکتراید باعث ایجاد 2.5 درصد از سیدین مصرف کلراید می‌گردد. واکنش را در pH 7.4 و در ادامه مصرف به مدت 30 دقیقه در میان آب جوش تا کدرو فراگیرش ایجاد تراکنش ترفنالامید در

شکل 7. پرپروپ سنتز شده

شکل 8. مربوط به نمونه استفاده‌پذیر PT-IR
جمله‌ای بی‌معنی و ناتوانی در تجزیه و تحلیل محصولات شیمیایی و ،

این مطالعه، از نظر تحقیقات دیگر، در مورد بازکردن پیامدهای جدیدی در زمینه شیمیایی و محصولات بیماران مبتلا به بیماری‌های عروقی ارائه می‌شود. این پژوهش نشان می‌دهد که...

این نتایج نشان می‌دهند که...

کلمات کلیدی:

- محصولات
- بیماری‌های عروقی
- شیمیایی

فهرست

<table>
<thead>
<tr>
<th>مؤلف 1</th>
<th>مؤلف 2</th>
<th>مؤلف 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>و. شهبانوری</td>
<td>م. رضاونی</td>
<td>ح. زاهدی</td>
</tr>
</tbody>
</table>

دانشگاه علوم پزشکی شهید رجایی

تاریخ: 28 خرداد 1400

* برگرفته از فرهنگسرای دانشگاهی علوم پزشکی شهید رجایی*
4. نتایج گیری

با توجه به نتایج طیف‌های گرفته شده از فرآورده‌های سنتز شده و مقایسه خصوصیات فیزیکی و شیمیایی آنها با نمونه‌های استاندارد، نتیجه می‌شود که پروپون با استفاده از این روش سنترز جدید، سنترز و خالص‌سازی شده است. یکسان بودن طیف FT-IR و واکنش‌های فیزیکی نشان دهنده اینکه فرآورده‌های سنتز شده با طیف‌های منویی استاندارد این ماده و همچنین نتایج طیف‌های 11C NMR و 13C NMR ماده سنترزی، سنترز این ماده را تایید می‌نماید. سادگی روش، مقرر می‌گردد برای پیدا کردن از انتظار اقتصادی و زمان کم انجم و آکشنت، مراحل روش استفاده شده برای سنتز پروپون در پروپون حاضر می‌باشد. نتایج بهبود استفاده شده، زمان نسبتاً زیاد خالص‌سازی با سنتوز کردانی‌گرایی پر شدن با آمونیاک باشد که الیک برای مراد استفاده می‌گردد دانه گرفته‌های اشکارانی از انرژی انتقال. به طورکلی، روش بیشتری به محل ساخته‌بندی روش و مقررات به صورت بودن از انتظار اقتصادی، روش مناسبی ارزیابی می‌شود.

5. مراجع